Comparative Analysis of Voting Schemes for Ensemble-based Malware Detection
نویسندگان
چکیده
Malicious software (malware) represents a threat to the security and the privacy of computer users. Traditional signature-based and heuristic-based methods are inadequate for detecting some forms of malware. This paper presents a malware detection method based on supervised learning. The main contributions of the paper are two ensemble learning algorithms, two pre-processing techniques, and an empirical evaluation of the proposed algorithms. Sequences of operational codes are extracted as features from malware and benign files. These sequences are used to create three different data sets with different configurations. A set of learning algorithms is evaluated on the data sets. The predictions from the learning algorithms are combined by an ensemble algorithm. The predicted outcome of the ensemble algorithm is decided on the basis of voting. The experimental results show that the veto approach can accurately detect both novel and known malware instances with the higher recall in comparison to majority voting, however, the precision of the veto voting is lower than the majority voting. The veto voting is further extended as trust-based veto voting. A comparison of the majority voting, the veto voting, and the trust-based veto voting is performed. The experimental results indicate the suitability of each voting scheme for detecting a particular class of software. The experimental results for the composite F1-measure indicate that the majority voting is slightly better than the trusted veto voting while the trusted veto is significantly better than the veto classifier.
منابع مشابه
Malware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملDyVSoR: dynamic malware detection based on extracting patterns from value sets of registers
To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...
متن کاملHigh accuracy android malware detection using ensemble learning
With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature based methods become less potent in detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JoWUA
دوره 4 شماره
صفحات -
تاریخ انتشار 2013